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Abstract—The saturation problem is the one of the most of the sliding surface is formulated as a pole assignment of
common handicaps for applying linear control to real applia- a reduced order linear uncertain system in a regin through
tions, especially the actuator saturation. This paper foca on a  .4yex optimization The solution to this problem is therefo

comparative study between the classic Linear Quadratic Rag . . R
lator (LQR) control and robust saturated sliding mode control. numerically tractable via standard LMI optimization ane th

In the first step, we present a design methodology of SMC of a €xisting robust linear system theory , and the second one is
class of linear saturated systems. We introduce the structe of to choose a control law to enforce the system behavior to
the saturation, them we perform the design of the sliding suface  reach and stay in the desired sliding surface. To validage th
as a problem of root clustering, which leads to the developnmé o0 retical concepts of this work, we treated an applicatio

of a smooth and non-linear control law that ensures to reach f ¢ f hicl t h il hiahliaht
the sliding surface. The second step is devoted to presentipfly ~©' & guarter ot venicie system where we will_highiight a

the Linear Quadratic Regulator (LQR) control technique.The Comparison between the sliding mode control and the LQR
constraint of saturation is reported on the control vector. To controllers.

highlight results we present a comparative analysis with a BIC
and LQR controllers with saturation. Finally, we use an exanple
of a quarter of vehicle system to give simulation results.

Keywords: Variable Structure Control; Sliding Mode Con-
trol; LQR regulator; Saturation; Robustness; LMI.

Il. SYSTEM WITH SATURATION CONSTRAINT

Let us consider that the structure of the saturation coinstra
is described by figure 1:

I. INTRODUCTION

The problem of saturation remains one of the obstacles to A Sat(U)
provide properties of guarantee on the stability of systems
Used in early days ([1], [2]...), and many other methods
which introduce conditions on systems containing satoinati U
functions ([3], [4], [5]...).- Most industrial processesavpte in - - U
the areas caracterised by many physical and technologinal ¢ Usat
straints (saturation, limit switches...). The implemd¢iota of
the control law designed without considering these lirota
can have dire consequences for the system. The problem of
the control of saturated systems is a subject of great isitere Fig. 1. The Structure of the saturation constraint
for applications. Used in early days, many rigorous design
methods are available to provide guarantee properties R8sumption 1: The control vector is subjected to constant
systems stability. In robustness terms the sliding mode/&y |imitations in amplitude. It's defined by:
significant transitory mode for the Variable Structure Goht
(VSC), ([6], [7]...). Early work was mainly done by Soviet v ¢ R™ = {u € R/ — Usar < u; < Usar; Usar >0} (1)
control scientists ([8],[9]...). In recent years, we find n@o
research and many successful applications ([10], [11],.[)2 The term of saturation has the following form
This paper is organized as follows: in the beginning, we give

Uaat

‘Usal

short introduction on the structure of the saturation awist Usat it ui > Usar

reported on the control vector and its implementation in thet(u) = { wi if —Usat <t <Usar , Vi=1,...,m
system. We will then present a design procedure of robust “Usar i ui < —Usat

saturated sliding mode control.This controller developme , @)
procedure contains the classical steps of sliding modedesiVe ¢an write

The first one is to build an optimal sliding surface.The ckoic sat(u)=pu 3)
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the elements of; are expressed as follows then

Ut if gy > Upey { (D) = Anga(t) + Arave(t) (12)
B; = { 1 if = Usgr <t; <Usqr , Vi=1,...m 92(t) = A21y1(t) + A22y2(t) + BBou(t)
=t i w < ~Usar @ Since the sliding condition is
The saturated system can be written as: Czx=CTTy=0 (13)
& (t) = Az (t) + BBu (1) (5) witch
with A € R, B € R 2z € R" andu € R™ AT = | A | opr_ [C1 Oy ] (14)
A1 Agg |7

Assumption 2: The pair(A4, B) is controllable,B has full rank

m, andn > m. We can the new defining sliding condition

I1l. SLIDING MODE CONTROL (SMC) Cryr + Coy2 =0 (15)

The sliding mode occurs when the state reaches and rem£ﬁ§umpti0n 3: CB is non-singular therCy must be non-
in the surface given by : singular.
The sliding mode condition becomes

S=[15={zeR"/Cx=0 6
jrjl J { / } () y2:_cglclyl:_Fyl (16)

The sliding mode occurs when the state reaches and remaingigh ¥ = C; 'C1 being an [m x (n-m)] matrix. The sliding
the surface intersection S of the m hyperplanes, geomiyricanode is then governed by the equations

the subspace S is the null space of C. { i = Ay + Aays

17
y2 = —Fiy (17

Differentiating with respect the time,
representing atn—m)*"* order system withy, playing the role

s=CAz+CBfu=0 @) of a state feedback control.The closed-loop system wilhthe
if (CBB)_l exists, then have thg dynamicg, = (.A.” — A1 F)yy T_his indicates Fhat
the design of a stable sliding mode requires the selectian of
Ueqg = — (CBﬁ)’1 CAxr = —Kzx (8) matrix F such thaty = (A1; — A12F)y; has(n—m) left half-

_ . plane eigenvalues. Performances are taken into account via
with K = (CBf)~ CA root clustering of the closed-loop dynamic matrix in a regio
i = (I, — BB (CBB) ' C) Az = Acq 9) of the complex plane. The are@(«,—q,r,0) considered
here is defined in Figure 2,which ensures a minimum decay
the dynamicsz (equation 9) describes the motion on theate « < 0, a minimum damping ratid = cosf, and for
sliding surface and depends only on the choice of C. relative stability and speed limitation can be made to place

) o . the eigenvalues in a circle in the left half complex plane.
1) Design of the sliding surfaceThe canonical form used

in Reference [4] for VSC design to select the gain matrix C

that gives a good and stable motion during the sliding mode. i
By assumption, the matrix B has full rank m; as a result,
there exists an (n x n) orthogonal transformation matrix T
such that.TB = lg l where By is (m x m) and non- 2]
2
singular. Note that the choice of an orthogonal matrix T dsoi (e, 1.6) Re(s)
inverting T when transforming back to the original systers. A 5
the transformed state variable vector is defined as:
y=Tx (20)

the state equation becomes @

v(t) = Tz(t) = TAx(t) + TBBu(t) (11)

Fig. 2. LMI Region:intersection of three elementary region

If the transformed state is partitoned a8 = [ y{ w3 |;
yp ERTTT oy, € R Where F must be selected, that those (n-m) eigenvalues

of the system are in the regioft (o, —q,r,0), it can be
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determined by using root clustering with LMI concept. C isvhere}_; € R™*™ is any design matrix with stable eigen-
given by them : values. In particular, we may s&t; = diag (x;) such that
C=[F I.|T (18) Re(p;) < 0foti=1tom. Transforming back into the original
x-space yields

2) Saturated control law desigrOnce the existence prob-  u*(z) = Lz = — (8B2) '[85 (Z4 — S5)| ThTx  (27)
lem has been solved that is the matrix C has been determined, .
attention must be turned to solving the reachability proble L=—(BB2)  [E3 (E4-3X)|T2T (28)
This mv_olves the select|on. of a feedbac!< control functio efore presenting the nonlinear control law pat letting the
u@) Wh'Ch ensures that trajectories are directed towards Niatrix P, denote the positive definite unique solution of the
switching surface from any point in the state space. Therobnt .
strategy used here will be derived from that of Referencé [1L3yapunov equation

which originated from the work of Gutman [14], and it consist P+ 5Py 41 =0 (29)
of the sum of a linear control law” and a nonlinear part’.
The general form is: then Pyzo = 0 if and only if zo = 0, and we may take
—1
w(x) = vl (z) + N (x :Lx+p7x (19) N_ _ (BB2)" " Pazo 30

where L is an (n-m) matrix, the null spaces of the matrices Nransforming back into the original x-space, we obtain
M; and C are coincident, andlis a small positive constant to

replace the discontinuous component by a smooth nonlinear N (BB2)"' [0 ) TTyx (31)
function, yielding chattering-free system response. [0 P] TTox| + 6
Starting from the transformed state y, we form a secorsihce the existence of the nonlinear component is checked
transformatiorls : " — R" such that them we can deduce the matrices N and M

Z =Toy =ToTa; Z7 = [ 27 (20) N=—(8By)""'[0 P|TT, (32)
And z; € R 29 € R M = [0 P2] TTs (33)
where

3) Invariance of the sliding model_et us consider a con-
tinuous linear uncertain system described by

I, 0
Ty=| 2™ 21
2 [ F Inm } (21) i(t) = (A+ AA)z(t) + (B + AB)u(t) (34)
AAandAB are the uncertainty of matching conditions type
T5 is non-singular as its inverse is given by written as
AA = BAA,AB = BAB (35)
I, = _F 1, (22) i the system is in sliding mode thesn = Cz(¢) = 0 En

] différentiant par rapport au temps
The new state variables are then

S, 3 i=C (A + BAA) 2 (t)+ OB (1 + AB) w(t)=0 (36)
29 = Fy1 + 2 .
and the transformed system equation becomes if (I + AB) exists , then
21:21214'2222 _ ~\ —1 1 -
{ b= a1+ 3y 22+ BBau (24) Ueq = (I + AB) (CB) C (A - BAA) x  (37)
with As a result
Y1 =An —ApF

S o5 i (1) = (A + BAA) ©—B(CB)'C (A + BAA) z (38)

D3 =F 3 —AnkF + Ay
Yoy =An+ ApE

In order to attain the ideal sliding mode, it is necessary to (t) = (I— B(CB)™ C) Ar = Aeqa (39)

force 25 andz, to become identically zero. To this end, the L . .
linear control law part.~ is formulated as The dynamicst (t) = A.qz describes the motion on the

sliding surface which is independent afAandAB and
u'(z) = — (BBa) ' [Ssz1 (T4 — B5)20] (26) depends only on the choice of the matrix C.

We finally get:
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IV. LINEAR QUADRATIC REGULATOR (LQR)

In this part we briefly recall the principle of the LQR nt, —I"’
control.
LQR: linear quadratic regulator. The system is linear ared th
control is quadratic. Let us consider the linear systemgjive -
in (45).

| X
HF] 1

Assumption 4: The pair (A,B) is stabilisable, i.e. there is
no unstable and ungovernable mode in the system.

Consider a state variable feedback regulator in the form of

u=—kx (40)

The optimization procedure to obtain the values of K cossist

of determining the control input u, which minimizes the

performance index J. The performance index J representstig- 3. Two degrees of freedom vibrating system with oneatotu
the performance characteristic requirement as well as the

controller input limitation [15].

The state feedback control which stabilizes the system aﬁﬁ‘nulation is achieved under the following condition:

minimizes the LQR criterion mi=me =1k =ks=1,C, =C5 =0.01,
J =/ (2" Qz + u" Ru)dt (41) -1<u(t)<1
0
The initial condition is given byro =[ 0 0 0 1 ]T

with R >0 and Q> 0
The matrix gain K is represented by;
I The figure (5) represents the poles of the reduced ordenmsyste
k=R"B'P (42) in an area defined b (o, —q,r,0) = Q(—04,0,2.5, pi/8)

P is a definite positive solution of the equation of RICCATIIN the complex plan.

PA+ATP - PBR'BT"P+Qz=0 (43)
we obtain thenJ,,;, = z Pz with z(t = 0) = xo. 3
Then the feedback regulator: 2
uw=—(R'BTP)x (44) 1
For the LQR control, we will use the same structure of o

saturation applied to the SMC presented in the first part.

V. NUMERICAL APPLICATION

We consider a two degree of freedom vibrating system with 2
one actuator describes by figure 4 The state equation of the
system is given by,[16]: E
X(t) _ Aa:(t) + Bu(t) (45) Fig. 4. Poles of the reduced system
with

After 3 iterations, the algorithm gives the stabilizing & of

0 0 1 0 the reduced system
0 0 0 1 T4 A
A= kithky ks C1tCy Ca F=]41215 23786 —4.5626 ]
ko ko o/ o ) According to (18)
mao m2 ma ma2
C=]41215 —23786 1.0000 4.5626 |
0 The following figure 5 and figure 6 presents, respectively,
0 the evolution of control input and the state variables (- - -:
B=| 1 LQR controller, —: SMC).
m1
0
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Fig. 5. Evolution of the control law (- -: LQR, —: sliding mode

Figure (5) presents the evolution of the saturated con

input. It's clear that the two controllers are saturated a
always inferior to its maximal value in the two cases, bLLt
we can check that the LQR controller have a more transiew

mode and the convergence is more slowly than that of

VI. CONCLUSION

In this paper, we proposed a comparative study of the
sliding mode and LQR controllers for linear time invariant
saturated systems. The structure of the saturation camtsiga
reported on the control input and being of constant linotagi
in amplitude. The design of the sliding surface is formudate
as a pole assignment of a reduced system in an LMI re-
gion.The non-linear saturated control scheme is introduce
will be ensure the elimination of the undesirable chattgrin
phenomenon and ensure a stable sliding mode motion. After
that, we briefly had the principle and results of LQR coné&oll
and we will use the same structure of saturation presented. T
verify the performance of the proposed SMC, we presented
the simulation results for two controllers, applied to the
"Two degrees of freedom vibrating system with one actuator”
Indeed these simulation results show that the LQR contrizlle

t%ble and acceptable,but the convergence is slowly. Thé SM

n remove the transient mode had been the main defect of the
R control, and has the better performance. Consequently,
verified that the proposed SMC had the better robustness

tlB‘érformance than the LQR control.

first control , what proves that the robust stability of the GM

is checked.
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Fig. 6. System response (x1 to x4), (- -: LQR, —: sliding mode)
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